bef-> NO.40

明天中午就要去昌邑了,今天下午为了放松出去和妈妈到处转了转。

心里其实还是紧张的,毕竟自己虽然水平一般可却不得不达到一批的标准?

其实假如发挥稳定,省一还是能拿到的吧。。千万不要有意外啊。

打了一遍Treap的板子,感觉除了平衡树以外的都没什么问题了。

其中果然犯了很细微但是很严重的错误

1
2
3
4
5
6
7
8
if(vx == v[Node])
{
if(c[Node] > 1) --c[Node] , --sz[Node];
else if(!ls[Node] || !rs[Node]) Node = ls[Node] + rs[Node];
else if(p[ls[Node]] < p[rs[Node]]) Zig(Node) , Delete(Node , vx);
else Zag(Node) , Delete(Node , vx);
return ; // return ! return ! return !
}

Delete函数中这段最后不加return是会严重错误的,它将使sz的维护彻底错误。


[HNOI2015]菜肴制作

题目描述

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。 ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1。

由于菜肴之间口味搭配的问题,某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如”i 号菜肴’必须’先于 j 号菜肴制作“的限制,我们将这样的限制简写为

现在,酒店希望能求出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:

也就是说,

(1)在满足所有限制的前提下,1 号菜肴”尽量“优先制作;

(2)在满足所有限制,1号菜肴”尽量“优先制作的前提下,2号菜肴”尽量“优先制作;

(3)在满足所有限制,1号和2号菜肴”尽量“优先的前提下,3号菜肴”尽量“优先制作

;(4)在满足所有限制,1 号和 2 号和 3 号菜肴”尽量“优先的前提下,4 号菜肴”尽量“优先制作;

(5)以此类推。

例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。

例2:共5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。

例1里,首先考虑 1,因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号又应”尽量“比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来考虑2,确定最终的制作顺序是 3,4,1,2。

例 2里,首先制作 1是不违背限制的;接下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。 现在你需要求出这个最优的菜肴制作顺序。无解输出”Impossible!“ (不含引号,首字母大写,其余字母小写)

输入输出格式

输入格式:

第一行是一个正整数D,表示数据组数。 接下来是D组数据。 对于每组数据: 第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限制的条目数。 接下来M行,每行两个正整数x,y,表示”x号菜肴必须先于y号菜肴制作“的限制。(注意:M条限制中可能存在完全相同的限制)

输出格式:

输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者“Impossible!“表示无解(不含引号)。

输入输出样例

输入样例#1:

1
2
3
4
5
6
7
8
9
10
11
12
13
3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3

输出样例#1:

1
2
3
1 5 3 4 2 
Impossible!
1 5 2 4 3

说明

【样例解释】

第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。

100%的数据满足N,M<=100000,D<=3。

题解